

Objectives

- The firefighter given a flammable liquid fire shall be able to correctly demonstrate three different foam applications to the satisfaction of the instructor.
- The firefighter given a presentation on foam use and application shall be able to demonstrate correct use and set-up of an in-line foam eductor.
- The firefighter given a demonstration shall be able to explain how foam works to extinguish a flammable liquid fire and explain the differences between polar solvents and hydrocarbons.
- The firefighter given a demonstration shall be able to correctly clean and maintain the foam eductor after its use.

What is Foam?

- Fire fighting foam is an aggregate (group or bunch) of air-filled bubbles
- Foam floats on flammable liquids
- Foam forms a cohesive floating blanket on flammable and combustible liquids
- Prevents or extinguishes fire by excluding air and cooling the fuel
- Prevents re-ignition by suppressing formation of flammable vapors
- Foam has the property of adhering to surfaces which provides exposure protection from adjacent fires.

Flammable Liquids

 Liquids that give enough vapors to support combustion at temperatures less than 100*F are flammable liquids

Combustible Liquids

• Liquids that must be at temperatures greater than 100*F to give off flammable vapors are combustible liquids.

Foam:

- Foam:
 - Can be used to suppress vapor release and prevent ignition
 - Separates O2 from fuel thus interrupting the fire tetrahedron

Class "A" Fires-Ordinary Combustibles

- Class A foam reduces surface tension of H2O and allows it to penetrate more easily into dense or piled class A materials.
- Foam also clings to materials and releases H2O into the fuel as the foam blanket drains.

Class "B" Fuels-Flammable/Combustible Liquids

- Class "B" fuels are simply liquid fuels
 - Hydrocarbon fuels-petroleum based-float on H2O (won't mix with H2O). Foam floats on hydro carbons thus suppressing vapors and extinguishing
 - Products of crude oil
 - Polar Solvent fuels-mix with H2O-require special alcohol resistant foam that won't mix with fuel
 - Synthetically produced

Class "C" Fuels-Electrical

- Don't use foam
- Use dry chemical or CO2 extinguishers.
- Foam is not recommended due to conductivity (possible better than plain H2O)
- Once it is de-energized you can use foam
 - De-energize and treat it as class A or class B fire

Class "D" Fuels-Combustible Metals

- Don't use foam because H2O makes it pop or explode (foam is 94%-97% H2O)
- Protect exposures and let the metal burn out
- Characteristic brilliant white light

Why Use Foam?

- Prevent ignition or re-ignition
- Suppress the release of flammable vapors
- Post fire security
- Protect fire & rescue personnel
 - During car fire-protects patient and crew
- Visible proof of security
- Must have equal or greater back up lines

Class "A" vs. Class "B" Foam

- Must use class A foam on class A fires and class B on class B fires.
- Class B foams that are designed solely for hydrocarbon fires will not extinguish polar solvent fires, no matter how much you use
- You must match foam with fuel or risk having an unsuccessful extinguishment and possible injury to firefighters

Characteristics of Class "A" Foam

- Mildly corrosive
- Small bubbles of a consistent size
- Better for adhering to surfaces
- Provide insulation barrier to minimize O2
- Surface tension-allows H2O to spread more rapidly over surface

Characteristics of Class "A" Foam

- Expansion-when adding air it causes a large volume of bubbles
- Drainage-amount of liquid that drains from bubbles to wet, penetrate and cool fuel
- Retention-allows foam to remain on and in fuel, reducing temp, increasing moisture content (affected by air movement and amount of heat)

Characteristics of Class "B" Foam

- Extinguishes flammable liquid fires and suppresses vapors from un-ignited spills
- H2O retention-key to long life vapor suppression
 - The faster the H2O drains-the sooner the blanket is vulnerable to heat attack

Characteristics of Class "B" Foam

- Foam life-period of time foam blanket remains in place and functional
 - Heat, type of concentrate, expansion ration, fuel involved, environmental conditions
- Heat resistance-ability of foam to resist heat
- Application method-bounce off, rain down, bank in
- Freeze resistance

Characteristics of Class "B" Foam

- Knock down speed-time required for foam blanket to spread across fuel
- Fuel resistance-ability to minimize fuel pick up (keeps fuel from surfacing and burning)
- Vapor suppression-vapor tight film to prevent re-ignition
- Alcohol tolerance-alcohol & polar solvents mix with H2O-AR creates a membrane between fuel and fire

- •To produce a quality foam blanket, four elements are necessary:
 - •foam concentrate
 - •water
 - •air
 - •aeration (mechanical agitation)
- •All of these elements must be combined properly to produce a quality foam blanket.
- •If any of the elements are missing or not correctly proportioned, the result is poor quality foam or no foam at all

Foam Works by:

- Separating fuel and fire
- Cooling fuel and container
- Suppress and prevents release of vapors
 - Less chance of ignition
- Excludes O2
- Do not break foam barrier with hose or by walking in fuel (wicking of fuel into gear)

- •Water is mixed with foam concentrate at the proportioning device
- •The mixture of concentrate and water is referred to as foam solution
- •Solution travels through the hose or pipe to the air aspirating discharge device
- •At the discharge device, air is introduced into the foam solution
- •The mixture of foam solution and air produces a finished (expanded) foam blanket

Application Techniques

• For foam to be effective, it must be applied to the surface of the fuel in a manner that will allow it to set-up a blanket that will smother, cool and suppress vapors. If this blanket is disrupted by means of foam application or by personnel or equipment, the foam's effectiveness is diminished

Cleaning the Eductor

- Flush with clean water
 - this removes concentrate
 - allows check valve ball to move freely
 - check screen for clogs
 - review mp #911.47

To Get Foam!

- Any length of 2 ½ before eductor
- 100-250 feet of 1 3/4 hose after eductor
- No kinks in the hose
- Akromatic nozzle set at 200 gpm/Fixed rate nozzle set at 95 gpm
- Bail open fully !!!! And set at 30 degree fog pattern
- Pump set at 200 psi

•The firefighter uses the proper technique for rolling a foam blanket onto a fire. YN
•The firefighter uses the proper technique for applying foam using the rain-down method. YN
•The firefighter uses the proper technique for applying foam using the banking method. YN
•The firefighter will correctly set-up and use an in-line foam eductor. $Y \underline{\hspace{1cm}} N \underline{\hspace{1cm}}$
•The firefighter will demonstrate proper cleaning techniques of an in-line foam eductor. YN